From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

نویسندگان

  • Christopher Angstmann
  • Isaac C. Donnelly
  • Bruce Ian Henry
  • B. A. Jacobs
  • T. A. M. Langlands
  • James A. Nichols
چکیده

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction-diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

A New Spectral Algorithm for Time-space Fractional Partial Differential Equations with Subdiffusion and Superdiffusion

This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2016